There have been a number of Scientific discoveries that seemed to be purely scientific curiosities that later turned out to be incredibly useful. Hertz famously commented about the discovery of radio waves: “I do not think that the wireless waves I have discovered will have any practical application.”
Are there examples like this in math as well? What is the most interesting “pure math” discovery that proved to be useful in solving a real-world problem?
Donuts were basis of the math that would enable a planned economy to be more efficient than a market economy (which is a very hard linear algebra problem).
Basically using that, your smart phone is powerful enough to run a planned economy with 30 million unique products and services. An average desktop computer would be powerful enough to run a planned economy with 400 million unique products and services.
Odd that knowledge about it has been actively suppressed since it was discovered in the 1970s but actively used mega-corporations ever since…
I’d like to read up on this if you have sources
Look up Wassily Wassilyevich Leontief
That’s pretty interesting. Do you happen to have any introductory material to that topic?
I mean, it might even have applications outside of running a techno-communist nation state. For example, for designing economic simulation game mechanics.
Well Wassily Wassilyevich Leontief won a Nobel prize in economics for his work on this subject that might help you get started
There’s no such thing as a Nobel Prize in economics. Economists got salty about this and came up with the Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel, and rely on the media shortening it to something that gets confused with real Nobel Prizes.